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The Soft X-Ray (SXR) tomography system on the Madison Symmetric Torus uses four cameras
to determine the emissivity structure of the plasma. This structure should directly correspond to
the structure of the magnetic field; however, there is an apparent phase difference between the
emissivity reconstructions and magnetic field reconstructions when using a cylindrical approxi-
mation. The difference between the phase of the dominant rotating helical mode of the magnetic
field and the motion of the brightest line of sight for each SXR camera is dependent on both
the camera viewing angle and the plasma conditions. Holding these parameters fixed, this phase
difference is shown to be consistent over multiple measurements when only toroidal or poloidal
magnetic field components are considered. These differences emerge from physical effects of the
toroidal geometry which are not captured in the cylindrical approximation. Published by AIP Pub-
lishing. [http://dx.doi.org/10.1063/1.4960492]

I. INTRODUCTION

The Soft X-Ray (SXR) diagnostic system was constructed
on the Madison Symmetric Torus (MST)1 in order to aid in the
study of resistive tearing modes via tomographic reconstruc-
tion of emissivity.2 The current system consists of four cameras
spaced at different poloidal angles around a single toroidal
position, labeled by the letters A-D, with each of these con-
sisting of ten individual viewing chords. Each chord measures
the brightness of the plasma, which is the line-integral of the
plasma emissivity,3 using two Be filters of different thickness.
A cross-sectional map of the emissivity of the plasma can
then be reconstructed through a variety of techniques,4 or the
electron temperature can be directly computed from the ratio
of the brightness data between the thick and thin sets of foils.3,5

It has been previously established that there is a direct
correspondence between magnetic island structures and SXR
emissivity structures.6 These structures appear during quasi-
single helicity (QSH) states,7 where a single m = 1 tearing
mode dominates the magnetic spectrum. This paper grew out
of an attempt to further characterize this relation at MST.
Instead of performing a full tomographic inversion, this tech-
nique examines the oscillating raw brightness of the plasma
during a QSH state and shows that this corresponds directly to
the oscillation of the dominant magnetic mode in a cylindrical
approximation, up to a phase shift.

The value of this phase shift, however, is found to be
dependent on the plasma conditions and whether the structure
is compared to the poloidal or toroidal component of the
magnetic field. These deviations are consistent with the effects
of toroidal mode-mixing and make the case that consideration
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a)Electronic mail: pvanmeter@wisc.edu

of these effects is essential when comparing measurements
between diagnostics located at different toroidal and poloidal
angles.

II. ESTIMATING THE PHASE OF THE SXR
EMISSIVITY STRUCTURE

In order to explore the relation between the phase of the
dominant mode of the magnetic field and the rotation of the soft
x-ray emissivity structure, it is important to first characterize
these structures in a self-consistent way. The magnetics array
on MST1 measures the amplitudes of both the toroidal and
poloidal components of the magnetic field at the device wall, at
poloidal angle θmag = 241◦, where θ = 0 is the outboard mid-
plane. At every time step, these amplitudes are independently
fit to a Fourier spectrum of the form

B(φ) =
∞

n=−∞
cn cos(nφ − δn). (1)

Here B(φ) may be either the poloidal or toroidal compo-
nent of the magnetic field, and δn is the phase of the nth mode.
Since the one-dimensional magnetic array is at a fixed poloidal
angle, it does not resolve poloidal harmonics, denoted by the
mode number m. In practice, however, this is not a problem
since the m = 1 mode tends to dominate core tearing mode
instabilities in MST.8

This analysis considers only periods of time in which the
magnetic field decomposition is dominated by a single mode
number, n, and in which the mode is not wall-locked. This
can sometimes happen via an electromagnetic breaking torque
associated with eddy current in the metal shell surrounding the
plasma. Under these conditions, the poloidal position of the
magnetic O-point at a given toroidal location φ is given by

θop,n(t) = nφ + θ − δn(t). (2)
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This relation assumes cylindrical symmetry, which is
often sufficient for describing RFP dynamics. The conse-
quence of the actual toroidal geometry is one of the main points
of this paper and the topic of discussion in Section IV.

The soft X-ray diagnostic on MST consists of four indi-
vidual x-ray cameras, each at the same toroidal angle (φ = 90◦)
and different poloidal angles. Although the system is capable
of performing a full tomographic reconstruction to produce
an emissivity map of a cross section of the plasma, for this
analysis, it suffices to consider only the raw brightness data. If
it is assumed that the brightest point in the plasma corresponds
to the O-point of the rotating magnetic island structure,7 then
the impact parameter of the brightest line of sight for a given
SXR camera can be expected to oscillate like

pS
max(t) = AS

0 − (AS
1 )2 sin

(
θop(t) − θS + F( f )

)
, (3)

where S ∈ {A,B,C,D} is the SXR camera label. The impact
parameter p is the distance of the line of sight from the geo-
metric axis. A0 and A1 are fitting parameters determining the
offset and amplitude of the oscillation. These vary by camera
location and are not important to the analysis presented here.
θS is the poloidal angle of the camera S. F( f ) is an additional
function to account for the frequency-dependence of the digital
amplifiers. In this analysis, F( f ) is assumed to behave approx-
imately as a first-order polynomial determined from a prior
calibration of the equipment.

Making the assumptions that lead to Equation (2), the
argument of the sinusoidal term can be rewritten in terms
of another fitting parameter and the phase of the dominant
magnetic mode,

θop(t) − θS = (n × 90◦ + 241◦ − θS − ∆δ) − δn(t)
≡ AS

2 − δn(t). (4)

An additional term,∆δ, is introduced here as a measure of
the deviation from cylindrical geometry to account for effects
related to toridicity. That is, if the cylindrical approximation is
a good assumption, then it will be found that ∆δ = 0. This is
the parameter that this paper is concerned with measuring.

In order to determine the maximum impact parameter for
a given camera at a given instant in time, it is necessary to
interpolate between the ten available lines of sight. This is done
most easily by fitting a second-order polynomial in the impact
parameter to the raw brightness data via a standard SVD-fit
routine9 and determining the coordinate which maximizes that
function. An example of this type of fit, as well as the quality
of the quadratic approximation, is shown in Fig. 1.

This technique can be performed over multiple timesteps
in order to produce the time evolution of pS

max for each of
the four cameras. These data are then fitted to the functional
form of Equation (3) with the argument of the sinusoidal
term written in the form of Equation (4). This was performed
via a nonlinear least-squares algorithm,9 using ∆δ = 0 as the
starting point for the computation and taking the values of
δn(t) directly from the magnetic array measurements. Fig. 2
shows data points from a typical QSH period as observed for
camera A and its best fit. The fit is qualitatively good, with
some deviation expected due to the minimal presence of other

FIG. 1. Example of the SXR brightness data vs. impact parameter fit to a
quadratic polynomial for cameras A (top) and B (bottom). The lines show
the location of peak brightness and associated uncertainty. The SXR camera
layout is also shown.

toroidal modes. We also observe good agreement between the
frequency of the SXR and magnetics array datasets.

The data obtained through this method can be compared
against data synthetically generated using a perfect cylindrical
geometry. This was performed with a computer simulation of
the SXR system, assuming a 6 cm Shafranov shift and a single
hot island (Te,max = 1350 eV for the bulk and 1650 eV for
the island). This helical structure was considered at several
different poloidal angles, and the simulated magnetic phase
was calculated using Equation (4) with ∆δ = 0, thus assuming
exactly one dominant toroidal mode and perfect cylindrical
geometry. This provides a value of the fit parameter AS

2 which
takes into account the effects of diagnostic geometry.∆δ is then
determined by comparing the value of AS

2 as determined from
the data to this “ideal case.”

III. SUMMARY OF RESULTS

Using the procedures described in Section II, the param-
eter∆δ was calculated for four different cases, considering two
different sets of plasma conditions and considering the phase
of both the poloidal and toroidal magnetic field components
separately. The two different sets of plasma conditions consid-
ered, referred to as Pulsed Poloidal Current Drive (PPCD)10,11

FIG. 2. Oscillation of the impact parameter of the brightest line of sight over
time for shot # 1150324080. The points represent data, and the solid line is
the fit model.
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TABLE I. Average ∆δ comparison (PPCD, n= 6).

SXR-A SXR-B SXR-C SXR-D Average

Mean ∆δθ 1.32 −9.32 −2.50 3.01 −1.87
St. dev. 8.85 10.63 11.90 9.44

Mean ∆δφ −26.11 −36.86 −30.52 −25.86 −29.84
St. dev. 8.85 10.78 11.45 9.41

TABLE II. Average ∆δ comparison (QSH, n= 5).

SXR-A SXR-B SXR-C SXR-D Average

Mean ∆δθ −16.13 −21.60 −13.59 −14.12 −16.36
St. dev. 8.05 7.92 12.12 8.26

Mean ∆δφ −46.17 −49.67 −42.94 −44.03 −45.70
St. dev. 8.80 8.48 12.37 8.65

and QSH, produce quasi-single helicity states that are domi-
nated by different toroidal modes (n = 6 for PPCD, n = 5 for
QSH). The magnetic phases considered, δn,θ and δn,φ, were
taken from the poloidal and toroidal magnetic field decomposi-
tions, respectively. The cylindrical model predicts these phases
to differ by 180◦.

The results of this analysis are given in Tables I and II,
taken from a sample size of about 40 shots/case. In both PPCD
and QSH plasmas,∆δ is nonzero. The mean value of∆δ varies
between cameras for a given set of conditions. Measurements
from SXR-B are always seen to have a more negative value
of ∆δ than the other cameras, regardless of conditions. This
is likely an effect of the camera viewing angle and suggests
a poloidal dependence. It is also notable that in both plasma
conditions, the difference between ∆δφ and ∆δθ is about 29◦,
which differs substantially from the cylindrical model.

There is a noticeable shift between the PPCD and QSH
cases of about 15◦ on average, although this effect too displays
a consistent dependence on viewing angle. This observation
suggests a dependence on the dominant mode number, which
relates to the radial location of the relevant rational surface.

IV. THE IMPORTANCE OF TOROIDAL EFFECTS
TO SXR MEASUREMENTS

The deviations from the cylindrical model discussed
above are due at least in part to the influence of toroidal

effects, which the model ignores. Such a geometry can lead
to a mixing effect between poloidal modes,12 which in turn
can cause significant shifts in the expected phase of observed
instabilities. Work is currently underway to compare these
measurements to simulations of core tearing modes in a
toroidal geometry using the NIMROD code,13 and preliminary
results display features consistent with these observations.

Future work will focus on quantifying any remaining
systematic effects on the phase due to finite bandwidth of the
distinct electronics and digitizer timing and on making more
quantitative comparisons to computer simulations of plasmas
in a toroidal geometry. However, the analysis presented here
is sufficient to emphasize the importance of taking toroidal
effects into consideration when comparing measurements
from the SXR tomography system with measurements taken
from diagnostics at other toroidal positions. Failing to
account for these effects could lead to a misinterpretation of
measurements.
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